sábado, 26 de março de 2011

Função do 2º Grau


Parábola: formas geométricas no cotidiano

Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a ≠ 0, é denominada função do 2º grau. Generalizando temos:
As funções do 2º grau possuem diversas aplicações no cotidiano, principalmente em situações relacionadas à Física envolvendo movimento uniformemente variado, lançamento oblíquo e etc.; na Biologia, estudando o processo de fotossíntese das plantas; na Administração e Contabilidade relacionando as funções custo, receita e lucro; e na Engenharia Civil presente nas diversas construções.

A representação geométrica de uma função do 2º grau é dada por uma parábola, que de acordo com o sinal do coeficiente a pode ter concavidade voltada para cima ou para baixo.

As raízes de uma função do 2º grau são os pontos onde a parábola intercepta o eixo x. Dada a função f(x) = ax² + bx + c, se f(x) = 0, obtemos uma equação do 2º grau,
ax² + bx + c = 0, dependendo do valor do discriminante ∆(delta), podemos ter as seguintes situações gráficas:

∆ > 0, a equação possui duas raízes reais e diferentes. A parábola intercepta o eixo x em dois pontos distintos.


∆ = 0, a equação possui apenas uma raiz real. A parábola intercepta o eixo x em um único ponto.

∆ < 0, a equação não possui raízes reais. A parábola não intercepta o eixo x.


Uma função do 2º grau é definida pela seguinte lei de formação f(x) = ax² + bx + c ou y = ax² + bx + c, onde a, b e c são números reais e a ≠ 0. Sua representação no plano cartesiano é uma parábola que, de acordo com o valor do coeficiente a, possui concavidade voltada para cima ou para baixo. A função do 2º grau assume três possibilidades de resultados ou raízes, que são determinadas quando fazemos f(x) ou y igual à zero, transformando a função numa equação do 2º grau, que pode vir a ser resolvida por Bháskara.

Gráfico da função

Coeficiente a > 0, parábola com a concavidade voltada para cima
Coeficiente a < 0, parábola com a concavidade voltada para baixo

∆ > 0 – A equação do 2º grau possui duas soluções distintas, isto é, a função do 2º grau terá duas raízes reais e distintas. A parábola intersecta o eixo das abscissas (x) em dois pontos.
∆ = 0 – A equação do 2º grau possui uma única solução, isto é, a função do 2º grau terá apenas uma raiz real. A parábola irá intersectar o eixo das abscissas (x) em apenas um ponto.
∆ < 0 – A equação do 2º grau não possui soluções reais, portanto, a função do 2º grau não intersectará o eixo das abscissas (x).




Pontos notáveis do gráfico de uma função do 2º grau

O vértice da parábola constitui um ponto importante do gráfico, pois indica o ponto de valor máximo e o ponto de valor mínimo. De acordo com o valor do coeficiente a, os pontos serão definidos, observe:

Quando o valor do coeficiente a for menor que zero, a parábola possuirá valor máximo.

Quando o valor do coeficiente a for maior que zero, a parábola possuirá valor mínimo.
Outra relação importante na função do 2º grau é o ponto onde a parábola corta o eixo y. Verifica-se que o valor do coeficiente c na lei de formação da função corresponde ao valor do eixo y onde a parábola o intersecta.

Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola
Função de 2º Grau - Funções - Matemática - Brasil Escola

Nenhum comentário:

Postar um comentário